Non-Negative Matrix Factorization and Support Vector Data Description Based One Class Classification
نویسندگان
چکیده
One class classification is widely used in many applications. Only one target class is well characterized by instances in the training data in one class classification, and no instance is available for other non-target classes, or few instances are present and they cannot form statistically representative samples for the negative concept. A two-step paradigm employing nonnegative matrix factorization (NMF) and support vector data description (SVDD) for one class classification training of nonnegative data is developed. Firstly, a projected gradient based NMF method is used to find the hiding structure from the training instances and the training instances are projected into a new feature space. Secondly, SVDD is employed to perform one class classification training with the projected feature data. Classification examples demonstrate that the proposed method is superior to principal component analysis (PCA) based SVDD method and other standard one class classifiers.
منابع مشابه
Voice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملLarge Scale Musical Instrument Identification
In this paper, automatic musical instrument identification using a variety of classifiers is addressed. Experiments are performed on a large set of recordings that stem from 20 instrument classes. Several features from general audio data classification applications as well as MPEG-7 descriptors are measured for 1000 recordings. Branch-and-bound feature selection is applied in order to select th...
متن کاملSVM classification of hyperspectral images based on wavelet kernel non-negative matrix factorization
This paper presents a new kernel framework for hyperspectral images classification. In this paper, a new feature extraction algorithm based on wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using the feature of multi-resolution analysis, the new method can improve the nonlinear mapping capability of kernel non-negative matrix fac...
متن کاملA Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کامل